MUFITS Training Course

Day 4

Radial grids, Fluid-in-place regions, Local grid refinements & Grid decomposition

Program

- Radial grids (scenario 7)
- Fluid-in-place regions
- Local grid refinements (scenario 8)
- Scenario 9
- Grid decomposition

$$A = \int_{domain} a dV$$

Simulation is parallel using 1 core, 2 cores, 3 cores, ... How the simulation is decomposed between the cores?

Radial grids

Radial grids

The number of grid blocks along every axis is defined by the keyword MAKE

```
MAKE-ENDMAKE syntax
     in GRID section
                                                          \theta (j-index)
    gridtype ni nj nk /
                                                                        r (i-index)
   -- other keywords
  ENDMAKE
                                                       z (k-index)
11
                                                          Select this option
      gridtype = CART
12
                  RADIAL - Radial Grid
13
                 CURNER - Corner-Point grid
14
15
            ni - number of grid blocks along i-indexation axis
16
            nj - number of grid blocks along j-indexation axis
17
            nk - number of grid blocks along k-indexation axis
```

Domain: $[0,200m]*[0,\pi/2]*[500m,510m]$

Grid: 30*20*1

Scenario 7

Simulate scenario for 500 days reporting distributions every 50 days

Fixed parameters at this boundary

Rock properties:

Porosity = 0.25;

Permeability = 50 mD;

Rock density = 2800 kg/m^3 ;

Heat capacity = 1.1 kJ/kg/K;

Heat conduct. = 2 W/m/K.

Init. cond:

PRES=5MPa, SWAT=0.1

Y-Axis

Inject water which temperature is 25°C at surface conditions. The injection rate is 500 m³/day at surface conditions.

Relative permeabilities:See the RUN-file

Day 4. Radial grids, Fluid-in-place regions, Local grid refinements & Grid decomposition

RUN-file (scenario 7)

- 1. Open RUN-file in text editor
- 2. Run the simulation
- 3. Open results in ParaView

Radial grids

The domain boundaries are defined by the keyword RTZBOUND

```
RTZBOUND syntax
   - within MAKE/ENDMAKE brackets.
  RTZBOUND
     rmin rmax tmin tmax zmin zmax rincr tincr zincr /
       rmin/rmax - the domain boundaries along axis r (rmin<rmax)
       tmin/tmax - the domain boundaries along axis theta (tmin<tmax) [rad]
       zmin/zmax - the domain boundaries along axis z (zmin<zmax)
                 - the increment of the grid block sizes along axis R. With
       rincr
                   increasing i-index every next grid block is xincr times larger
                   then the previous block;
                 - the increment of the grid block sizes along axis Theta. With
       tincr
14
                   increasing j-index every next grid block is tincr times larger
15
                   then the previous block;
16
                 - the increment of the grid block sizes along axis Z. With
       zincr
                                                                zincr times larger
```

Exercise: Re-simulate scenario 7 using theta range $[0,\pi/4]$

Radial grids

The grid block extensions can be redefined using the DRV, DTHETAV, DZV keywords

```
DRV syntax

-- within MAKE-ENDMAKE brackets

DRV

dr(1) dr(2) dr(3) ... dr(nr) /

dr(#) - grid blocks extensions along axis R.

nr - number of grid block along axis R. nr is the 2nd argument of the keyword MAKE.
```

Exercise: Re-simulate scenario 7 applying a grid refinement to the center.

Fluid-in-place regions

FIPNUM regions

FIP = Fluid-in-Place

FIPNUM region numbers can be used for

- calculate average value in a region of reservoir domain (e.g., avarage pressure, temperature);
- integrate a property in a region (e.g., calculate total mass of a component in domain);
- calculate parameters for boundary between two regions of domain (e.g., calculate total mass flux between two region).

To use Fluid-in-Place option you should

- 1. Define different Fluid-in-Place regions in **GRID** or **INIT** sections using mnemonic **FIPNUM** (by default in all cells **FIPNUM**=0).
- 2. Specify the properties to be reported for the regions using **RPTFIP** keyword.

You can create consolidated time series data for FIPNUM regions in the **POST** section using **POSTFPCE** and **POSTFPCO** keywords.

Keyword RPTFIP

The output for FIPNUM regions in the file SCENARIO%.####.SUM is controlled by the RPTFIP keyword

```
RPTFIP syntax

-- in INIT or SCHEDULE section

RPTFIP

mnemonic1 mnemonic2 mnemonic3 ... /

mnemonic# - is the mnemonic of a property saved in the files *.0000.SUM,

*.0001.SUM, *.0002.SUM, etc for fluid-in-place regions.
If one of the mnemonics is ASCII then the formatted file is saved. Mnemonic NOTHING clears the report list.
```

Keyword POSTFPCE

By using this keyword you can create consolidated time series data for FIPNUM regions.

```
POSTFPCE syntax

-- in POST section

POSTFPCE
fipnum1 filename1 /
fipnum2 filename2 /
fipnum3 filename3 /
...

/

fipnum6 - the fluid-in-place region number for which the output is required;
filename# - output file name (if not specified the program uses default naming convention).
```

Keyword POSTFPCO

By using this keyword you can create consolidated time series data for boundary between two FIPNUM regions.

```
POSTFPCO syntax
    in POST section
  POSTFPCO
   fipnuma1 fipnumb1 filename1 /
   fipnuma2 fipnumb2 filename2 /
    fipnuma3 fipnumb3 filename3 /
11
                  - two fluid-in-place region numbers for which the output is
         fipnuma#
12
                      required. The flow rate is reported in the direction
          -fipnumb#
13
                      from fipnuma# to fipnumb#.
14
         filename# - output file name (if not specified the program uses default
15
                      naming convention).
16
```

Using FIPNUM regions

Exercise

Re-simulate scenario 7 using provided heterogeneous distribution of permeability and taking into account heat exchange with impermeable rocks

The grid block sizes are increasing along axis r with increment 1.1.

RUN-file (scenario 7, exercise)

- 1. Open RUN-file in text editor
- 2. Run the simulation
- 3. Open results in ParaView

Results

Day 4. Radial grids, Fluid-in-place regions, Local grid refinements & Grid decomposition

Local grid refinements (LGRs)

Atmosphere

Scenario 8

interpretation

Simulate scenario up to 100000 days reporting distributions every 1000 days

Grid: 30*5. EOS-module: **BINMIXT**

Rock properties:

Porosity = 0.25;

Permeability = 100 mD;

Rock density = 2900 kg/m^3 ;

Heat capacity = 0.84 kJ/kg/K; Heat conduct. = 2 W/m/K.

Water (e.g., a lake)

Porous media (convection develops)

High temperature (impermeable)

Rel. perm:

Brooks & Corey, smin =0.2

smax = 0.95

600 m

RUN-file (scenario 8)

- 1. Open RUN-file in text editor
- 2. Run the simulation
- 3. Open results in ParaView

Result (scenario 8)

Local grid refinements

CARFIN keyword

The **CARFIN** keyword defines local grid refinements

```
____ CARFIN syntax -
   - within MAKE-ENDMAKE brackets
  CARFIN
    name imin imax jmin jmax kmin kmax nx ny nz parent /
                 - name of the refined grid;
       name
       imin/imax - the boundaries of the refined grid along i-index direction
                   in the parent grid;
10
       jmin/jmax - the boundaries of the refined grid along j-index direction
11
                   in the parent grid;
12
       kmin/kmax - the boundaries of the refined grid along j-index direction
13
                   in the parent grid;
14
                 - the number of grid blocks in the refined grid along i-index
       nx
15
                   direction;
16
                 - the number of grid blocks in the refined grid along j-index
       ny
17
                   direction;
18
                 - the number of grid blocks in the refined grid along k-index
19
       nz
                   direction;
20
                 - the parent grid name.
       parent
^{21}
22
```

REFINE & ENDFIN keywords

Keyword **REFINE** selects a grid to be active. It affects the **BOX** keyword and arrays loading. After the keyword **CARFIN** the created grid is active.

```
-- in every section except RUNSPEC and POST

REFINE
gridname resname /

gridname - grid name (8-byte character);
resname - the name of reservoir in which the grid is defined.
```

Keyword **ENDFIN** resumes the active grid to the initial grid encompassing the whole reservoir

Local grid refinements

Exercise: Re-simulate scenario 8 using the following grid.

Answer

```
Day 4. Answer

-- within MAKE-ENDMAKE brackets

CARFIN

LGR1 1 6 1 1 2 4 6 1 9 /

CARFIN

LGR2 15 21 1 1 4 5 7 1 4 /

ENDFIN
```

Nested LGRs

Exercise: Re-simulate scenario 8 using the following grid.

LGRs; Arrays loading

Exercise: Re-simulate scenario 8 using the following permeability distribution.

LGRs; Arrays loading (answer)

```
_ Day 4. Answer
     in GRID section
  ENDFIN
  EQUALS
     PERMX 100 /
  REFINE
    LGR1 /
  EQUALS
     PERMX 50
                          2*2 /
10
     PERMX 30
                2 4 2* 2*8 /
11
12
  REFINE
   LGR2 /
  EQUALS
15
     PERMX 30 2 6 2* 2*2 /
16
17
  ENDFIN
  COPY
    PERMX PERMZ /
20
21
```

Local grid refinements

Exercise: Re-simulate scenario 8 using twice as more refined grid as the initial grid. Do not change the MAKE keyword.

Exercise: Apply random porosity variations to the refined grid.

More complicated LGRs

More complicated LGRs can be created using HXFIN, HYFIN, HZFIN, NXFIN, NYFIN, NZFIN keywords (see the Reference manual).

Scenario 9

(simulations with both LGRs and Wells)

Day 4. Radial grids, Fluid-in-place regions, Local grid refinements & Grid decomposition

RUN-file (scenario 9)

- 1. Open RUN-file in text editor
- 2. Run the simulation
- 3. Open results in ParaView

Results (scenario 9)

Grid decomposition

Grid decomposition

The number of parallel processes (cores) assigned to simulation are specified in the command line when you launch the simulation (an example of commands for 3 processes are below).

Mac:

mpirun –n 3 ./../../BIN/H64.EXM SCENARIO9.RUN > SCENARIO9.LOG

Linux:

mpirun –n 3 ./../../BIN/H64.EXL SCENARIO9.RUN > SCENARIO9.LOG

Windows:

"...mpiexec.exe" -n 3 ../../BIN/H64.EXE SCENARIO9.RUN > SCENARIO9.LOG

By default the simulator automatically balances simulation between cores. The user assistance is not required.

Automatic grid partition

Exercise: Re-simulate Scenario 9 on 3 cores.
Save the MPIRANK and MPINUM property
from the GRID section

Result

Day 4. Radial grids, Fluid-in-place regions, Local grid refinements & Grid decomposition

Decomposition specified by user

There are two options to specify decomposition by user:

- 1. Using MPINUM keyword;
- 2. Using the PARTIT keyword.

Normally, when these options are chosen the NOAUTO keyword should be specified within brackets MAKE-ENDMAKE. The NOAUTO switch disables automatic grid partition.

MPINUM region

Exercise: Specify the grid decomposition using MPINUM keyword and re-simulate scenario 9 using 3 processes. Save MPIRANK and MPINUM properties from GRID section.

The MPINUM keyword can be used to specify a user-defined decomposition within MAKE-ENDMAKE brackets. The cells with equal MPINUM number are assigned to the same process. The MPIRANK property can be used to check the created partition.

Day 4. Radial grids, Fluid-in-place regions, Local grid refinements & Grid decomposition

Answer

```
Day 4. Answer
1 NOAUTO
3 MPINUM
     100000*0 /
6 BOX
    1 12 /
9 MPINUM
     100000*1 /
10
11
12 BOX
    1 25 1 10 /
14
15 MPINUM
     100000*2 /
16
17
18 ENDBOX
```

Keyword PARTIT

The PARTIT keyword creates a Cartesian grid decomposition. Normally, this keyword should be used with the NOAUTO keyword which disables automatic grid partition.

```
PARTIT syntax

-- within MAKE-ENDMAKE brackets

PARTIT

ni nj nk nsrt /

ni - number of the grid partition regions along i-index direction;

nj - number of the grid partition regions along j-index direction;

nk - number of the grid partition regions along k-index direction;

nk - number of the grid partition regions along k-index direction;

nsrt - the initial number from which the partition regions are numbered.

The MPINUM property is assigned to the regions with i-index cycling the fastest following by the j- and k-indexes.
```

More complicated partitions can be created using PARTI, PARTI and PARTK keywords associated with the PARTIT keyword.

Exercise

Exercise: Specify the grid decomposition using PARTIT keyword and re-simulate scenario 9 using 6 processes. Save MPIRANK and MPINUM properties from GRID section.

Answer

```
Day 4. Answer

-- within MAKE-ENDMAKE brackets

NOAUTO

PARTIT
2 3 /
```

Next day

- Corner-point grids
- Faults
- Aquifers
- Onshore/offshore boundary conditions

